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The advent of interband cascade (IC) lasers (1) has brought new hopes for commercial and 
military applications that require mid-IR sources. However, in order to impact these markets, the 
lasers must not only emit tens-of-milliwatts, but also operate with high duty cycles at 
temperatures approaching 300 K. Though theoretical predictions suggest that the IC lasers could 
provide watts of CW power at room temperature (2), this has yet to be achieved.  

Changes in design parameters, which take advantage of the unique characteristics of the type-II 
band alignment to enhance quantum efficiency and minimize Auger recombination, certainly 
have played a key role in the rapid advances in performance characteristics reported to date (3-
8). But, since antimony-based materials have poor thermal conductivities, concerted efforts must 
be made to efficiently remove heat from the active region.  Therefore, we have chosen to focus 
our attention in this note on the increase in operating temperature that resulted from modest 
changes in laser processing techniques.  

The IC laser structure used for this work has 18 repeated periods of active regions separated by 
n-type doped InAs/AlSb injection regions structurally similar to that described earlier (3).  Each 
period of M103 includes an active region with an asymmetric InAs/Ga0.7In0.3Sb/InAs “W” 
quantum well, followed by an AlSb barrier layer and Ga0.7In0.3Sb, AlSb, and GaSb layers 
facilitating electron transport into the neighboring InAs/AlSb injection region. 

What was different about the lasers discussed in this work was the manner in which they were 
fabricated. In the past, the substrate side of the structure was thinned to about 100 µm before 
evaporating a Au/Ti contact layer onto it. Then the epi-side was wet-etched to just below the 
upper cladding layer (~1.5 µm), a passivation layer of SiO2 was deposited, and this was followed 
by the Au/Ti contact layer. Lastly, a layer of indium was evaporated onto the substrate so that the 
device could be bonded to a gold plated copper mount. 

For this work, the laser was prepared similar to previous samples, except for 3 differences. They 
were: 1) the epi-side of the wafer was etched into the upper cladding layer, 2) the Au/Ti upper 
contact layer was followed with 3 µm of electroplated Au, and 3) a pre-formed piece of indium 
foil was used to solder the device to the gold plated copper mount.   

A 0.992 mm × 4 µm wide laser was fabricated, as discussed above, and mounted on the 
temperature-controlled cold-finger of a cryostat. Then CW spectral and L-I-V data were acquired 
as a function of temperature.  Figure 1 shows L-I plots that were acquired in the temperature 
range between 80 K and 214.4 K.  
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Figure 1.  L-I data for a 0.992 mm × 4 µm type-II interband cascade laser. The DEQE ranges  
from 568% at 80 K to 239 % at 200 K, but then drops to 54% at 214.4 K. 

The curves are quite linear above threshold and correspond to differential external quantum 
efficiency (DEQE, S) values that decrease slowly from 568% at 80 K to 239% at 200 K 
according to  

 ( ) ( )
1

0 T
TSLnSLn += . 

Above 200 K the DEQE drops rapidly to 54% at 214.4 K. The temperature dependence of the 
DEQE (below 200 K) yields a T1 of 160.2 K.  Figure 2 shows a plot of the natural logarithm of 
the threshold current density, Jth, as a function of temperature 

 ( ) ( )
0

0 T
TJLnJLn th += , 

where Jth is the threshold current density,  J0 is the threshold current density at 0 K, and T0 is the 
device characteristic temperature. The data below 200 K results is linear and yields a value of 
40.2 K for T0. Above 200 K, the data diverges from linearity because there is a finite thermal 
resistance, Rth, between the active region and the silicon diode temperature sensor on the cold 
finger. This temperature difference, ∆T, can be written as: 
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 thAH VIRTTT =−=∆ , 

where TH and TA are the heat sink and active region temperatures, V and I are the bias and 
injected currents at threshold. The active region temperature extrapolated from the linear portion 
of the data shown in figure 2 is 232.5 K. This yields a value of 43.5 W/K for the thermal 
resistance between the active region and the heat sink. 

 

Figure 2.  The natural logarithm of the threshold current density plotted as a function of  
temperature for the 0.992 mm × 4 µm laser. The straight line is a linear fit to the  
data below 200 K. The difference between the data points and the linear fit gives  
a lower bound to the temperature of the active region. 

The maximum CW operating temperature of 214.4 K is, to the best of our knowledge, the 
highest published to date for an electrically mid-IR pumped laser. It is almost 70 K greater than 
our previous result of 150 K from a similar laser structure (8).  We attribute the increase in 
operating temperature to modest improvements in the processing and packaging techniques. 
Specifically, the electroplated gold deposited on the epi-up side of the laser significantly 
increases thermal spreading, calculations corroborate this posit. The indium preformed foil 
improved the integrity of the bond between the laser and the Au plated copper heat sink. This 
latter point is evidenced by TEM images of the interface between the laser structure and the gold 
plated copper mount.  
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